Strategic Approaches to Trading Science Objectives Against Measurements and Mission Design:

Mission Architecture and Concept Maturation at the Jet Propulsion Laboratory

Kelley Case, Alfred Nash III

Jet Propulsion Laboratory, California Institute of Technology

Missions that fly return *infinitely* more data than missions that don't

Image Credit: JHU/APL

Missions happen when...

What happened during the last Earth Science Decadal?

Decadal Survey Mission	Mission Description	Orbit ^a	Instruments	Rough Cost Estimate (FY 06 \$million)	
2010-2013					
CLARREO (NASA portion)	Solar and Earth radiation; spectrally resolved forcing and response of the climate system			200	
SMAP	Soil moisture and freeze-thaw for weather and water cycle processes	LEO, SSO	L-band radar L-band radiometer	300	
CESat-II	Ice sheet height changes for climate change diagnosis	LEO, Non-SSO	Laser altimeter	300	
DESDynl	Surface and ice sheet deformation for understanding natural hazards and climate; vegetation structure for ecosystem health	LEO, SSO	L-band InSAR Laser altimeter	700	
2013-2016					
HyspIRI	Land surface composition for agriculture and mineral characterization; vegetation types for ecosystem health	LEO, SSO	Hyperspectral spectrometer	300	
ASCENDS	Day/night, all-latitude, all-season CO ₂ column integrals for climate emissions	LEO, SSO	Multifrequency laser	400	
SWOT	Ocean, lake, and river water levels for ocean and inland water dynamics	LEO, SSO	Ka- or Ku-band radar Ku-band altimeter Microwave radiometer	450	
GEO-CAPE	Atmospheric gas columns for air quality forecasts; ocean color for coastal ecosystem health and climate emissions	GEO	High-spatial-resolution hyperspectral spectrometer Low-spatial-resolution imaging spectrometer IR correlation radiometer	550	
ACE	Aerosol and cloud profiles for climate and water cycle; ocean color for open ocean biogeochemistry	LEO, SSO	Backscatter lidar Multiangle polarimeter Doppler radar	800	
2016-2020					
LIST	Land surface topography for landslide hazards and water runoff	LEO, SSO	Laser altimeter	300	
PATH	High-frequency, all-weather temperature and humidity soundings for weather forecasting and sea-surface temperature ^b	GEO	Microwave array spectrometer	450	
GRACE-II	High-temporal-resolution gravity fields for tracking large-scale water movement	LEO, SSO	Microwave or laser ranging system	450	
SCLP	Snow accumulation for freshwater availability	LEO, SSO	Ku- and X-band radars K- and Ka-band radiometers	500	
GACM	Ozone and related gases for intercontinental air quality and stratospheric ozone layer prediction	LEO, SSO	UV spectrometer IR spectrometer Microwave limb sounder	600	
3D-Winds (Demo)	Tropospheric winds for weather forecasting and pollution transport	LEO, SSO	Doppler lidar	650 X	

Priorities from the NRC, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, The National Academies Press, Washington, D.C., 2007.

What missions are going forward?

- ✓ SMAP launched January 31, 2015
- ✓ ICESat-2 scheduled for launch in 2018
- ✓ NISAR scheduled for launch in 2020
- ✓ SWOT scheduled for launch in 2021
- ✓ GRACE-II scheduled for launch in 2018
- ✓ ACE and GEO-CAPE science objectives will be partially achieved by PACE and TEMPO missions
- ✓ ASCENDS and SCLP are being addressed through significant airborne measurement campaigns

Why do some missions proceed and others not?

Traditional Approach

Concurrent Approach

How do I get the Science I want?

Idea Generation

Organize and rank ideas based on figures of merit

Initial Feasibility

Quantitatively examine an idea for both technical and programmatic feasibility using analysis tools

Trade Space Exploration

Efficiently explore the value, cost, and risk trade space for mission concepts

Baseline Concept

Point Design at the component level with validated, integrated models

Science Solutions

- Community perspective workshops on science priorities
- Facilitated discussions to develop focused science requirements

		Scientific Measurement Requirements						
Science Goals	Science Objectives	Physical Parameters	Observables	Instrument Performance		Projected Performance	Mission Requirements	
Goal 1	Objective 1	Column Density of Absorber	Absorption Line	Alt. Range	Alt Panga	XX km	ZZ km	Observing strategies
		Density and Temperature of Emitter	Emission Line		AA KIII	ZZ KIII	requires yaw & elevation maneuvers Launch window to meet nadir and limb overlap requirement Need NN seasons to trace evolution of phenomenon Need MM months of observation to observe variability of phenomenon	
		Size of Features	Morphological Feature	Vertical Resolution	XX km	ZZ km		
				Horizontal Resolution	XX deg. XX lat. XX long.	XX deg. XX lat. XX long.		
			Rise time of eruptive phenomena	Temperatur e Resolution	XX min.	ZZ min.		
				Precision	XX K	ZZ K		
				Accuracy	XX K	ZZ K		

Table Example of Science Traceability Matrix from NASA AO

Cost Solutions

Analogy Mission Comparison

Cost vs. Mass for Analogous Missions

Rules of Thumb

Earth Orbiting w/o LV

The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

Stop by our poster to discuss possibilities

Poster Session IN13B: Recent Advances in Deep Learning and Data Analytics in Earth, Atmospheric, and Planetary Sciences

What? Tactical Approaches for Trading Science Objectives Against Measurements and Mission Design: Science Traceability Techniques at the Jet Propulsion Laboratory (IN13B-0072)

When? Monday, 11 December 2017, 13:40 - 18:00

Where? Poster Hall D-F

Who? Alfred Nash, JPL Team X Lead Engineer